155 research outputs found

    Emergent Communication in Interactive Sketch Question Answering

    Full text link
    Vision-based emergent communication (EC) aims to learn to communicate through sketches and demystify the evolution of human communication. Ironically, previous works neglect multi-round interaction, which is indispensable in human communication. To fill this gap, we first introduce a novel Interactive Sketch Question Answering (ISQA) task, where two collaborative players are interacting through sketches to answer a question about an image in a multi-round manner. To accomplish this task, we design a new and efficient interactive EC system, which can achieve an effective balance among three evaluation factors, including the question answering accuracy, drawing complexity and human interpretability. Our experimental results including human evaluation demonstrate that multi-round interactive mechanism facilitates targeted and efficient communication between intelligent agents with decent human interpretability.Comment: Accepted by NeurIPS 202

    Role of apolipoprotein O in autophagy via the p38 mitogen-activated protein kinase signaling pathway in myocardial infarction

    Get PDF
    Objective: To explore the role and possible mechanisms of action of apolipoprotein O (APOO) in autophagy in Myocardial Infarction (MI) in vivo and in vitro. Methods: Differential gene expression and single Gene Set Enrichment Analysis (GSEA) were used to evaluate MI-related candidate genes. Animal and cell MI models were established. Sh-APOO, si-APOO, and SB203580 were used to inhibit the expression of APOO or p38MAPK. Western blot and qRT-PCR were used to analyze the expression levels of the target protein or mRNA. Apoptosis was observed using the TUNEL assay. The plasma concentrations of CK-MB and cTn-I in humans and mice were determined. Results: In the GSE23294 dataset, APOO mRNA was highly expressed in the left ventricle of mice with MI; GSEA revealed that APOO was positively correlated with p38MAPK, autophagy, and apoptosis. The plasma concentration of APOO in patients with MI was significantly higher than that in healthy subjects. The expression of APOO, Beclin-1, LC3, and Bax in mouse and AC16 cell MI models increased, while the level of Bcl-2 decreased. After silencing the APOO gene, the expression of APOO was downregulated; meanwhile, changes in autophagy, apoptosis and myocardial cell injury were reversed in vivo and in vitro. Furthermore, autophagy was alleviated after AC16 cells were treated with SB203580. Conclusions: The increased APOO expression in mouse and cell MI models may activate autophagy and apoptosis by regulating the p38MAPK signaling pathway, thus aggravating the myocardial injury

    Wideband Power Spectrum Sensing: a Fast Practical Solution for Nyquist Folding Receiver

    Full text link
    The limited availability of spectrum resources has been growing into a critical problem in wireless communications, remote sensing, and electronic surveillance, etc. To address the high-speed sampling bottleneck of wideband spectrum sensing, a fast and practical solution of power spectrum estimation for Nyquist folding receiver (NYFR) is proposed in this paper. The NYFR architectures is can theoretically achieve the full-band signal sensing with a hundred percent of probability of intercept. But the existing algorithm is difficult to realize in real-time due to its high complexity and complicated calculations. By exploring the sub-sampling principle inherent in NYFR, a computationally efficient method is introduced with compressive covariance sensing. That can be efficient implemented via only the non-uniform fast Fourier transform, fast Fourier transform, and some simple multiplication operations. Meanwhile, the state-of-the-art power spectrum reconstruction model for NYFR of time-domain and frequency-domain is constructed in this paper as a comparison. Furthermore, the computational complexity of the proposed method scales linearly with the Nyquist-rate sampled number of samples and the sparsity of spectrum occupancy. Simulation results and discussion demonstrate that the low complexity in sampling and computation is a more practical solution to meet the real-time wideband spectrum sensing applications

    Distributed UAV Swarm Augmented Wideband Spectrum Sensing Using Nyquist Folding Receiver

    Full text link
    Distributed unmanned aerial vehicle (UAV) swarms are formed by multiple UAVs with increased portability, higher levels of sensing capabilities, and more powerful autonomy. These features make them attractive for many recent applica-tions, potentially increasing the shortage of spectrum resources. In this paper, wideband spectrum sensing augmented technology is discussed for distributed UAV swarms to improve the utilization of spectrum. However, the sub-Nyquist sampling applied in existing schemes has high hardware complexity, power consumption, and low recovery efficiency for non-strictly sparse conditions. Thus, the Nyquist folding receiver (NYFR) is considered for the distributed UAV swarms, which can theoretically achieve full-band spectrum detection and reception using a single analog-to-digital converter (ADC) at low speed for all circuit components. There is a focus on the sensing model of two multichannel scenarios for the distributed UAV swarms, one with a complete functional receiver for the UAV swarm with RIS, and another with a decentralized UAV swarm equipped with a complete functional receiver for each UAV element. The key issue is to consider whether the application of RIS technology will bring advantages to spectrum sensing and the data fusion problem of decentralized UAV swarms based on the NYFR architecture. Therefore, the property for multiple pulse reconstruction is analyzed through the Gershgorin circle theorem, especially for very short pulses. Further, the block sparse recovery property is analyzed for wide bandwidth signals. The proposed technology can improve the processing capability for multiple signals and wide bandwidth signals while reducing interference from folded noise and subsampled harmonics. Experiment results show augmented spectrum sensing efficiency under non-strictly sparse conditions

    Distribution of multi-level B cell subsets in thymoma and thymoma-associated myasthenia gravis

    Get PDF
    B-cell subsets in peripheral blood (PB) and tumor microenvironment (TME) were evaluated to determine myasthenia gravis (MG) severity in patients with thymoma-associated MG (TMG) and the distribution of B cells in type B TMG. The distribution of mature B cells, including Bm1-Bm5, CD19+ and CD20+ B cells and non-switched (NSMBCs) and switched (SMBCs) memory B cells, were determined in 79 patients with thymoma or TMG. Quantitative relationships between the T and TMG groups and the TMG-low and TMG-high subgroups were determined. NSMBCs and SMBCs were compared in TME and PB. Type B thymoma was more likely to develop into MG, with types B2 and B3 being especially associated with MG worsening. The percentage of CD19+ B cells in PB gradually increased, whereas the percentage of CD20+ B cells and the CD19/CD20 ratio were not altered. The (Bm2 + Bm2')/(eBm5 + Bm5) index was significantly higher in the TMG-high than in thymoma group. The difference between SMBC/CD19+ and NSMBC/CD19+ B cell ratios was significantly lower in the thymoma than TMG group. NSMBCs assembled around tertiary lymphoid tissue in thymomas of patients with TMG. Few NSMBCs were observed in patients with thymoma alone, with these cells being diffusely distributed. MG severity in patients with TMG can be determined by measuring CD19+ B cells and Bm1-Bm5 in PB. The CD19/CD20 ratio is a marker of disease severity in TMG patients. Differences between NSMBCs and SMBCs in PB and TME of thymomas can synergistically determine MG severity in patients with TMG.</p

    Role of CD34 in inflammatory bowel disease

    Get PDF
    Inflammatory bowel disease (IBD) is caused by a variety of pathogenic factors, including chronic recurrent inflammation of the ileum, rectum, and colon. Immune cells and adhesion molecules play an important role in the course of the disease, which is actually an autoimmune disease. During IBD, CD34 is involved in mediating the migration of a variety of immune cells (neutrophils, eosinophils, and mast cells) to the inflammatory site, and its interaction with various adhesion molecules is involved in the occurrence and development of IBD. Although the function of CD34 as a partial cell marker is well known, little is known on its role in IBD. Therefore, this article describes the structure and biological function of CD34, as well as on its potential mechanism in the development of IBD
    • …
    corecore